Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the gallery for the big picture.
- class nidl.callbacks.multitask_probing.MultiTaskEstimator(estimators)[source]¶
Bases:
BaseEstimator
A meta-estimator that wraps a list of sklearn estimators for multi-task problems (mixed regression/classification).
- Parameters:
estimators : list of sklearn.base.BaseEstimator
List of scikit-learn estimators (classifiers, regressors or a mixed). It sets the number of tasks to be solved.
- fit(X, y)[source]¶
Fit each estimator on its corresponding column in y.
- Parameters:
X : array-like, shape (n_samples, n_features)
y : array-like, shape (n_samples, n_tasks)
- Returns:
self : the fitted estimator.
Follow us