Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the gallery for the big picture.
- nidl.metrics._regression._check_reg_targets(y_true, y_pred, sample_weight, multioutput, dtype='numeric')[source]¶
Check that y_true, y_pred and sample_weight belong to the same regression task.
To reduce redundancy when calling _find_matching_floating_dtype, please use _check_reg_targets_with_floating_dtype instead.
- Parameters:
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
sample_weight : array-like of shape (n_samples,) or None
Sample weights.
multioutput : array-like or string in [‘raw_values’, uniform_average’,
‘variance_weighted’] or None None is accepted due to backward compatibility of r2_score().
dtype : str or list, default=”numeric”
the dtype argument passed to check_array.
- Returns:
type_true : one of {‘continuous’, continuous-multioutput’}
The type of the true target data, as output by ‘utils.multiclass.type_of_target’.
y_true : array-like of shape (n_samples, n_outputs)
Ground truth (correct) target values.
y_pred : array-like of shape (n_samples, n_outputs)
Estimated target values.
sample_weight : array-like of shape (n_samples,) or None
Sample weights.
multioutput : array-like of shape (n_outputs) or string in [‘raw_values’,
uniform_average’, ‘variance_weighted’] or None Custom output weights if
multioutput
is array-like or just the corresponding argument ifmultioutput
is a correct keyword.
Follow us