Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the gallery for the big picture.
- class surfify.augmentation.mixup.GroupMixUp(prob, n_vertices)[source]¶
Randomly bootstraps measures at specific vertices across a group of K subjects, assuming a vertex-to-vertex correspondence between hemispheres.
Init class.
- Parameters:
prob : float
the probability of curuption.
n_vertices : int (N, )
the size of the cortical measures.
- classmethod groupby(data, by=('texture',), n_neighbors=30, n_components=20, meta=None, weights=None)[source]¶
Regroup subjects based on a combination of metrics.
- Parameters:
data : array (M, N)
input data/textures.
by : list of str, default (‘texture’, )
used to determine the metrics.
n_neighbors : int, default 30
the number of neighbors.
n_components : int, default 20
the number of PCA components, used to reduce the input data size.
meta : pandas.DataFrame, default None
the external data.
weights : array, default None
the weight applied to each distance matrix formed from the metric defined in the by parameter.
- Returns:
neigh_ind : array (M, n_neighbors)
indices of the nearest subjects in the population.
- run(data, group_data, n_samples=1)[source]¶
Applies the group bootstaping.
- Parameters:
data : array (N, )
input data/texture.
group_data : array (k, N)
input group data/textures.
n_samples : int, default 1
the number of bootstraping to be performed.
- Returns:
data : arr (N, ) or (M, N)
bootsraped input data.
Follow us