Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the gallery for the big picture.
- surfify.datasets._samples_generator.make_classification(ico_vertices, n_samples=40, n_classes=2, scale=1, seed=None)[source]¶
Generate a random n-class classification problem.
- Parameters:
ico_vertices : array (N, 3)
the icosahedron’s vertices.
n_samples : int, default 40
the number of gene rate samples.
n_classes : int, default 2
the number of classes.
scale : int or list of int, default 1
the scale of each Gaussian.
seed : int, default None
seed to control random number generation.
- Returns:
X : ndarray (n_samples, n_classes, n_vertices)
the generated samples.
y : ndarray (n_vertices, )
the assocaited labels.
Follow us