Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the gallery for the big picture.
- class surfify.models.vae.HemiFusionDecoder(output_shape, before_latent_dim, latent_dim, conv_flts=(64, 128, 128, 256, 256), fusion_level=1, activation='LeakyReLU', batch_norm=False)[source]¶
Init class.
- Parameters:
output_channels : int, default 1
the number of output channels.
input_dim : int,
the size of the squared input to the convnet, after the dense layer transforming the input from the latent space.
latent_dim : int, default 64
the size of the latent space it decodes from.
conv_flts : list of int
the size of convolutional filters, given in reverse order: the first filter in the list will be the last one in the network.
fusion_level : int, default 1
at which max pooling level left and right hemisphere data are concatenated.
activation : str, default ‘LeakyReLU’
activation function’s class name in pytorch’s nn module to use after each convolution
batch_norm : bool, default False
optionally uses batch normalization after each convolution
- forward(z)[source]¶
The decoder.
- Parameters:
z : Tensor (samples, <latent_dim>)
the stochastic latent state z.
- Returns:
left_recon_x : Tensor (samples, <input_channels>, azimuth, elevation)
reconstructed left cortical texture.
right_recon_x : Tensor (samples, <input_channels>, azimuth, elevation)
reconstructed right cortical texture.
Follow us