Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the gallery for the big picture.
- class surfify.models.vae.SphericalHemiFusionDecoder(input_channels, input_order, latent_dim, conv_flts=(64, 128, 128, 256, 256), fusion_level=1, activation='LeakyReLU', batch_norm=False, conv_mode='DiNe', dine_size=1, repa_size=5, repa_zoom=5, dynamic_repa_zoom=False, standard_ico=False, cachedir=None)[source]¶
Init class.
- Parameters:
input_channels : int, default 1
the number of input channels.
input_dim : int, default 192
the size of the converted 3-D surface to the 2-D grid.
latent_dim : int, default 64
the size of the latent space it encodes to.
conv_flts : list of int
the size of convolutional filters.
fusion_level : int, default 1
at which max pooling level left and right hemisphere data are concatenated.
activation : str, default ‘LeakyReLU’
activation function’s class name in pytorch’s nn module to use after each convolution
batch_norm : bool, default False
optionally uses batch normalization after each convolution
- forward(x)[source]¶
The decoding.
- Parameters:
left_x : Tensor (batch_size, <input_channels>, n_vertices)
input left cortical textures.
right_x : Tensor (batch_size, <input_channels>, n_vertices)
input right cortical textures.
- Returns:
x : Tensor (batch_size, <latent_dim>)
the latent representations.
Follow us