Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the gallery for the big picture.
- surfify.utils.coord.ico2ico(vertices, ref_vertices)[source]ΒΆ
Find a mapping between two icosahedrons: a simple rotation is estimated by identifying 4 vertices with same coordinates up to their signs and then finding the best rotation using permutations.
- Parameters:
vertices : array (N, 3)
the vertices to project.
ref_vertices : array (N, 3)
the reference/target vertices.
- Returns:
rotation : scipy.spatial.tranform.Rotation
the rotation that transforms the vertices to the reference.
See also
Examples
>>> from surfify.utils import icosahedron, ico2ico >>> import matplotlib.pyplot as plt >>> from surfify.plotting import plot_trisurf >>> ico2_verts, ico2_tris = icosahedron(order=2) >>> ico2_std_verts, ico2_std_tris = icosahedron(order=2, standard_ico=True) >>> rotation = ico2ico(ico2_verts, ico2_std_verts) >>> fig, ax = plt.subplots(1, 1, subplot_kw={ "projection": "3d", "aspect": "auto"}, figsize=(10, 10)) >>> plot_trisurf(ico2_std_verts, triangles=ico2_std_tris, colorbar=False, fig=fig, ax=ax, alpha=0.3, edgecolors="blue") >>> plot_trisurf(rotation.apply(ico2_verts), triangles=ico2_tris, colorbar=False, fig=fig, ax=ax, alpha=0.3, edgecolors="green") >>> plt.show()
Follow us