Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the gallery for the big picture.
- surfify.utils.sampling.neighbors_rec(vertices, triangles, size=5, zoom=5)[source]ΒΆ
Build rectangular grid neighbors and weights.
This is the base function to build Rectangular Patch (RePa) kernels.
- Parameters:
vertices : array (N, 3)
the icosahedron vertices.
triangles : array (N, 3)
the icosahedron triangles.
size : int, default 5
the rectangular grid size.
zoom : int, default 5
scale factor applied on the unit sphere to control the neighborhood density.
- Returns:
neighs : array (N, size**2, 3)
grid samples neighbors for each vertex.
weights : array (N, size**2, 3)
grid samples weights with neighbors for each vertex.
grid_in_sphere : array (N, size**2, 3)
zoomed rectangular grid on the sphere vertices.
See also
Examples
>>> from surfify.utils import icosahedron, neighbors_rec >>> import matplotlib.pyplot as plt >>> from surfify.plotting import plot_trisurf >>> ico2_verts, ico2_tris = icosahedron(order=2) >>> neighs = neighbors_rec(ico2_verts, ico2_tris, size=3, zoom=3) >>> fig, ax = plt.subplots(1, 1, subplot_kw={ "projection": "3d", "aspect": "auto"}, figsize=(10, 10)) >>> plot_trisurf(ico2_verts, triangles=ico2_tris, colorbar=False, fig=fig, ax=ax) >>> center = ico2_verts[0] >>> for cnt, point in enumerate(neighs[2][0]): >>> ax.scatter(point[0], point[1], point[2], marker="o", c="red", s=100) >>> ax.scatter(center[0], center[1], center[2], marker="o", c="blue", s=100) >>> plt.show()
Follow us