Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the gallery for the big picture.
- surfify.utils.sampling.patch_tri(order=6, standard_ico=False, size=3, direct_neighbor=False, n_jobs=1)[source]ΒΆ
Build triangular patches that map the icosahedron.
This is the base function for Vision Transformers.
- Parameters:
order : int, default 6
the icosahedron order.
standard_ico : bool, default False
optionally uses a standard icosahedron tessalation. FreeSurfer tesselation is used by default.
size : int, default 3
the patch size.
direct_neighbor : bool, default False
order patch vertices.
n_jobs : int, default 1
the maximum number of concurrently running jobs.
- Returns:
patches : array
triangular patches containing icosahedron indices.
Examples
>>> from surfify.utils import icosahedron, patch_tri >>> import matplotlib.pyplot as plt >>> from surfify.plotting import plot_trisurf >>> ico3_verts, ico3_tris = icosahedron(order=3) >>> patches = patch_tri(order=3, size=1, size=1) >>> fig, ax = plt.subplots(1, 1, subplot_kw={ "projection": "3d", "aspect": "auto"}, figsize=(10, 10)) >>> plot_trisurf(ico2_verts, triangles=ico2_tris, colorbar=False, fig=fig, ax=ax) >>> for cnt, idx in enumerate(patches[10]): >>> point = ico3_verts[idx] >>> ax.scatter(point[0], point[1], point[2], marker="o", s=100) >>> plt.show()
Follow us