Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the gallery for the big picture.
- surfify.utils.text2ico(texture, vertices, ref_vertices, atol=0.0001)[source]ΒΆ
Projects a texture associated to an icosahedron onto an other one.
- Parameters:
texture : array (N, K)
the input texture to project.
vertices : array (N, 3)
the vertices corresponding to the input texture.
ref_vertices : array (N, 3)
the reference/target vertices.
atol : float, default 1e-4
tolerance when matching the vertices.
- Returns:
texture : array (N, K)
the texture projected on the reference icosahedron.
See also
Examples
>>> from surfify.utils import icosahedron, text2ico >>> from surfify.datasets import make_classification >>> import matplotlib.pyplot as plt >>> from surfify.plotting import plot_trisurf >>> ico2_verts, ico2_tris = icosahedron(order=2) >>> ico2_std_verts, ico2_std_tris = icosahedron(order=2, standard_ico=True) >>> X, y = make_classification(ico2_verts, n_samples=1, n_classes=3, scale=1, seed=42) >>> y_std = text2ico(y, ico2_verts, ico2_std_verts) >>> plot_trisurf(ico2_std_verts, triangles=ico2_std_tris, texture=y_std, is_label=True) >>> plt.show()
Follow us