PyTorch toolbox to work with spherical surfaces.
Note
This page is a reference documentation. It only explains the class signature, and not how to use it. Please refer to the gallery for the big picture.
- class surfify.preprocessing.StandardScaler(mode='sub', mask=None, copy=True, with_mean=True, with_std=True)[source]¶
Bases:
StandardScaler
Standardize features by removing the mean and scaling to unit variance.
Based on sklearn.preprocessing.StandardScaler.
Init scler.
- Parameters:
mode : str, default=’sub’
the scaling mode, either ‘sub’ to operate at the subject level or ‘group’ to operate at the group level.
mask : array or str, default=None
mask the input data before scaling, i.e. normalize only vertices that are masked.
copy : bool, default=True
If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned.
with_mean : bool, default=True
If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory.
with_std : bool, default=True
If True, scale the data to unit variance (or equivalently, unit standard deviation).
- fit(X, y=None)[source]¶
Compute the mean and std to be used for later scaling.
- Parameters:
X : {array-like, sparse matrix} of shape (n_subjects, n_vertices)
the data used to compute the mean and standard deviation used for later scaling along the features axis.
y : None
ignored.
- Returns:
self : object
fitted scaler.
- inverse_transform(X, copy=None)[source]¶
Scale back the data to the original representation.
- Parameters:
X : {array-like, sparse matrix} of shape (n_subjects, n_vertices)
the data used to scale along the features axis.
copy : bool, default=None
copy the input X or not.
- Returns:
X_tr : {ndarray, sparse matrix} of shape (n_subjects, n_vertices)
transformed array.
- set_inverse_transform_request(*, copy: bool | None | str = '$UNCHANGED$') StandardScaler ¶
Request metadata passed to the
inverse_transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toinverse_transform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toinverse_transform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
copy : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
copy
parameter ininverse_transform
.- Returns:
self : object
The updated object.
- set_partial_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') StandardScaler ¶
Request metadata passed to the
partial_fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed topartial_fit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it topartial_fit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
sample_weight : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inpartial_fit
.- Returns:
self : object
The updated object.
- set_transform_request(*, copy: bool | None | str = '$UNCHANGED$') StandardScaler ¶
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
copy : str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
copy
parameter intransform
.- Returns:
self : object
The updated object.
- transform(X, copy=None)[source]¶
Perform standardization by centering and scaling.
- Parameters:
X : {array-like, sparse matrix of shape (n_subjects, n_vertices)
the data used to scale along the features axis.
copy : bool, default=None
copy the input X or not.
- Returns:
X_tr : {ndarray, sparse matrix} of shape (n_subjects, n_vertices)
transformed array.
Follow us