Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the gallery for the big picture.
- surfify.utils.sampling.downsample(vertices, target_vertices)[source]ΒΆ
Downsample icosahedron vertices by finding nearest neighbors.
- Parameters:
vertices : array (n_samples, n_dim)
points of data set.
target_vertices : array (n_query, n_dim)
points to find nearest neighbors for.
- Returns:
nearest_idx : array (n_query, )
index of nearest neighbor in target_vertices for every point in vertices.
See also
downsample_data
,downsample_ico
,interpolate
,interpolate_data
Examples
>>> from surfify.utils import icosahedron, downsample >>> import matplotlib.pyplot as plt >>> from surfify.plotting import plot_trisurf >>> ico2_verts, ico2_tris = icosahedron(order=2) >>> ico3_verts, ico3_tris = icosahedron(order=3) >>> down3to2 = downsample(ico3_verts, ico2_verts) >>> ico3_down_vertices = ico3_verts[down3to2] >>> fig, ax = plt.subplots(1, 1, subplot_kw={ "projection": "3d", "aspect": "auto"}, figsize=(10, 10)) >>> plot_trisurf(ico3_verts, triangles=ico3_tris, colorbar=False, fig=fig, ax=ax) >>> for cnt, point in enumerate(ico3_down_vertices): >>> ax.scatter(point[0], point[1], point[2], marker="o", c="red", s=100) >>> plt.show()
Follow us