Deep learning for NeuroImaging in Python.
Note
This page is a reference documentation. It only explains the function signature, and not how to use it. Please refer to the gallery for the big picture.
- surfify.utils.sampling.interpolate(vertices, target_vertices, target_triangles)[source]ΒΆ
Interpolate icosahedron missing data by finding nearest neighbors.
Interpolation weights are set to 1 for a regular icosahedron geometry.
- Parameters:
vertices : array (n_samples, n_dim)
points of data set.
target_vertices : array (n_query, n_dim)
points to find interpolated texture for.
target_triangles : array (n_query, 3)
the mesh geometry definition.
- Returns:
interp_indices : array (n_query, n_feats)
the interpolation indices.
See also
interpolate_data
,downsample
,downsample_data
,downsample_ico
Examples
>>> from surfify.utils import icosahedron, interpolate >>> from surfify.datasets import make_classification >>> import matplotlib.pyplot as plt >>> from surfify.plotting import plot_trisurf >>> ico2_verts, ico2_tris = icosahedron(order=2) >>> ico3_verts, ico3_tris = icosahedron(order=3) >>> X, y = make_classification(ico2_verts, n_samples=1, n_classes=3, scale=1, seed=42) >>> up_indices = interpolate(ico2_verts, ico3_verts, ico3_tris) >>> up_indices = np.asarray(list(up_indices.values())) >>> y_up = y[up_indices.reshape(-1)].reshape(up_indices.shape) >>> y_up = np.mean(y_up, axis=-1) >>> plot_trisurf(ico3_verts, triangles=ico3_tris, texture=y_up, is_label=False) >>> plt.show()
Follow us